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Abstract
Poles of solutions to the Painlevé-I equations are intimately related to the theory
of the cubic anharmonic oscillator. In particular, poles of integrále tritronquée
are in bijection with cubic oscillators that admit the simultaneous solutions of
two quantization conditions. We analyze this pair of quantization conditions
by means of a suitable version of the complex WKB method.

PACS numbers: 02.30.Hq, 02.30.Zz, 03.65.Sq

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The aim of this paper is to study the distribution of poles of the solutions y = y(z) to the
Painlevé-I equation (P-I)

y′′ = 6y2 − z, z ∈ C,

with particular attention to the poles of the integrále tritronquée.
As is well known, any local solution of P-I extends to a global meromorphic function

y(z), z ∈ C, with an essential singularity at infinity [GLS00]. Global solutions of P-I are
called Painlevé-I transcendents, since they cannot be expressed via elementary functions or
classical special functions [Inc56]. The integrále tritronquée is a special P-I transcendent,
which was discovered by Boutroux in his classical paper [Bou13] (see [JK88, Kit94] for a
modern review). Boutroux characterized the integrále tritronquée as the unique solution of
P-I with the following asymptotic behavior at infinity:

y(z) ∼ −
√

z

6
, if | arg z| <

4π

5
.

Nowadays, the Painlevé-I equation is studied in many areas of mathematics and physics.
Indeed, it is remarkable that special solutions of P-I describe semiclassical asymptotics
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of a wealth of different problems (see [Kap04] and references therein). In particular, in
[DGK09] it is discovered that the integrále tritronquée provides the universal correction to the
dispersionless limit of solutions to the focusing nonlinear Schrödinger equation.

Theoretical and numerical evidences led the authors of [DGK09] to the following
inspiration.

Conjecture. If a ∈ C is a pole of the integrále tritronquée then | arg a| � 4π
5 .

Following the isomonodromic approach to P-I [Kap04] (see also [FMZ92]), any solution
y(z) gives rise to an isomonodromic deformation of the following linear equation with an
irregular singularity:

−→
� λ(λ, z) =

(
y ′(z) 2λ2 + 2λy(z) − z + 2y2(z)

2(λ − y(z)) −y ′(z)

)
−→
�(λ, z).

The deformation of the equation is manifestly singular at every pole a ∈ C of y; however,
in theorem 2 we show that at the singularity this equation can be replaced with a simpler
one, which has the same monodromy data (cf [IN86] for Painlevé II). This is the following
Schrödinger equation with cubic potential:

d2ψ(λ)

dλ2
= V (λ; a, b)ψ(λ), V (λ; a, b) = 4λ3 − 2aλ − 28b.

Here a is the location of the pole of y and b is a complex number entering into the Laurent
expansion of y around a (see formula (7) below).

The isomonodromy property implies that there exists a natural injective map M from the
space of solutions of P-I to the space of monodromy data of the above equations (see lemma 2),
while the Schrödinger equation defines naturally a map T from the space of cubic potentials
to the space of monodromy data.

Our first main result is theorem 3, which states that a ∈ C is a pole of y(z) if and only if
there exists b ∈ C such that M(y) = T (V (λ; a, b)).

In particular, due to the special monodromy data related to the integrále tritronquée (see
theorem 1, due to Kapaev), we will show that the poles of the integrále tritronquée are in
bijection with the simultaneous solutions of two different quantization conditions.

The above approach naturally embeds the study of poles of Painlevé-I transcendents into
Nevanlinna’s theory of branched coverings of the sphere and the complex WKB method.

The beautiful theory of Nevanlinna (see [Nev70, Elf34]) relates bijectively the Schrödinger
equations to a polynomial potential to the branched coverings of the sphere with logarithmic
branch points, considered up to conformal equivalence. Using this theory we are able to prove
the surjectivity of the map M (see theorem 5).

Moreover, Nevanlinna’s theory provides the poles of any solution of P-I with an
unexpected and remarkable rich structure. In particular, poles of the tritronquée solution
can be labeled by the monodromy of coverings of the Riemann sphere with three logarithmic
branch points. In a subsequent paper, we will use this topological description to complete the
WKB analysis of the present paper.

A WKB analysis of P-I was developed in [KT05], but has never been applied to the
direct study of the distributions of poles. To achieve such a goal we follow Fedoryuk’s
approach (see [Fed93]) to the complex WKB theory, and in the classification theorem we give
a complete topological classification of the Stokes complexes of all cubic potentials. As a
consequence of the classification theorem, we obtain our second main result: all polynomials
whose monodromy data, in the WKB approximation, are the monodromy data of the integrále
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tritronquée have the same topological type of Stokes complex and satisfy a pair of Bohr–
Sommerfeld quantization conditions, namely system (25). In particular, in this way we
reproduce the conditions obtained by Boutroux, through a completely different approach, in
his study of the asymptotic distributions of the poles of the integrále tritronquée.

A priori, the WKB method is expected to give an approximation of poles z = a for a
sufficiently large. Surprisingly our approach proves to be numerically very efficient also for
poles close to the origin, see table 2 below.1

The paper is organized as follows. In section 2 we derive the Schrödinger equation
associate with P-I and study thoroughly its relations with poles of P-I transcendents. Section 3
is devoted to the topological classification of Stokes complexes. In section 4 we calculate
the monodromy data in the WKB approximation, we derive the correct Bohr–Sommerfeld
conditions for the poles of tritronquée, and we introduce the ‘small parameter’ of the
approximation. In section 5 we obtain an asymptotic description of poles of the integrale
tritronquée. In appendices A and B we prove some theorems regarding the WKB functions
that are used in sections 2 and 3.

2. Poles and cubic oscillators

We review some well-known facts regarding the isomonodromic approach to the P-I equation
and analyze the isomonodromic deformation in a neighborhood of the singularities.

2.1. P-I as an isomonodromic deformation

P-I is equivalent to the compatibility condition of the following system of linear ODEs:

−→
� λ(λ, z) =

(
y ′(z) 2λ2 + 2λy(z) − z + 2y2(z)

2(λ − y(z)) −y ′(z)

)
−→
�(λ, z) (1)

−→
� z(λ, z) = −

(
0 2y(z) + λ

1 0

) −→
�(λ, z). (2)

The precise meaning of the word compatibility is given by the following.

Lemma 1. Fix z0, λ0 and the Cauchy data y(z0), y ′(z0) and
−→
�(λ0, z0). Let Uz0 be any simply

connected neighborhood of z0. Then y(z) satisfies the Painlevé first equation in Uz0 iff the
system (1), (2) has a solution ∀(λ, z) ∈ C × Uz0 . Moreover, the solution is unique.

Proof. See [Kap04]. �

In this subsection we suppose that we have fixed a solution y of P-I and a simply connected
region U such that y|U is holomorphic.

We are now going to define the important concepts of monodromy data and isomonodromic
deformation of equation (1). For this reason, we have to introduce some particular solutions
of system (1), (2), to be uniquely defined by the asymptotic behavior for λ → ∞.

Fix k ∈ Z5 = {−2, . . . , 2} and the branch of λ
1
2 in such a way that Reλ

5
2 → +∞ as

|λ| → ∞, arg λ = 2πk
5 . Then (see [Kap04]) for any y solution of P-I, there exists a unique

1 In a recent paper [Nov09] Novokshenov studied numerically the distribution of poles of the integrále tritronquée
by means of the Padé approximation technique.
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solution
−→
�k(λ, z) of (1), (2) such that

lim
λ→∞

| arg λ−2 πk
5 |< 3π

5 −ε

e+ 4
5 λ

5
2 − 1

2 zλ
1
2

(
λ− 1

4 0

0 λ+ 1
4

)
−→
� k(λ) =

(
1
1

)
, ∀z ∈ U, (3)

where λ
1
4 is defined globally on the complex plane minus the negative real axis, and is positive

on the positive real axis. Note that, depending on k ∈ Z5,
(
λ

1
4
)2

may not be equal to λ
1
2 . Here

and in the following, if not otherwise stated, ε is an arbitrarily small positive number.
From the asymptotics (3) it follows that

−→
� k(λ, z) and

−→
� k+1(λ, z) are linearly independent

for any k ∈ Z5 and the following equality holds true:
−→
� k−1(λ) = −→

� k+1(λ) + σk(z)
−→
� k(λ), (4)

where σk(z) is an analytic function of z, for any k ∈ Z5.

Definition 1. Fixed z, we call σk the kth Stokes multiplier of equation (1) and the set of all
five Stokes multipliers the monodromy data of (1). The problem of calculating the monodromy
data is called the direct monodromy problem.

Stokes multipliers are very important for our analysis and we list their main properties in
the following.

Lemma 2. Let σk(z), k ∈ Z5 be defined as above. Then

(i) equation (2) is an isomonodromic deformation of equation (1), i.e. dσk(z)

dz
= 0.

(ii) The numbers σk, k ∈ Z5 satisfy the following system of algebraic equations:

1 + σkσk+1 = −iσk+3, k ∈ Z5. (5)

Proof. See [Kap04]. �

Observe that only three of the algebraic equations (5) are independent.

Definition 2. We denote V the algebraic variety of quintuplets of complex numbers satisfying
(5) and call admissible monodromy data the elements of V. Due to lemma 2, equations (4)
define the following map:

M : {P-I transcendents} → V.

Lemma. M is injective.

Proof. See [Kap04]. �

We end the section with a result of Kapaev, which completely characterizes the integrále
tritronquée in terms of Stokes multipliers.

Theorem 1 (Kapaev). The image under M of the integrále tritronquée is the monodromy
data uniquely characterized by the following equalities:

σ2 = σ−2 = 0. (6)

Proof. See [Kap04]. �
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2.2. Poles of y: cubic oscillator

So far we dealt with system (1), (2) in a region U which does not contain any pole of y(z).
Indeed, the situation at a pole is different, for equation (1) makes no sense.

However, we show that any solution
−→
�(λ, z) of system (1), (2) is meromorphic in all the

z-plane; moreover, a pole z = a of y(z) is also a pole of
−→
�(λ, z) and the residue at the pole

of its second component satisfies the scalar equation of Schrödinger type (8).
In order to be able to describe the local behavior of

−→
�(λ, z) near a pole a of y(z), we

have to know the local behavior of y(z) close to the same point a.

Lemma 3 (Painlevé). Let a ∈ C be a pole of y. Then in a neighborhood of a, y has the
following convergent Laurent expansion:

y(z) = 1

(z − a)2
+

a(z − a)2

10
+

(z − a)3

6
+ b(z − a)4 +

∑
j�5

cj (a, b)(z − a)j (7)

where b is some complex number and cj (a, b) are real polynomials in a and b, not depending
on the particular solution y.

Conversely, fixed arbitrary a, b ∈ C, the above expansion has a non zero radius of
convergence and solves P-I.

Proof. See [GLS00]. �

Definition 3. We define the map

L : C
2 → {P-I transcendents}.

L(a, b) is the unique analytic continuation of the Laurent expansion (7).

We have already collected all elements necessary to formulate the important

Theorem 2. Fix a solution y of P-I and let �
(i)
k (λ, z), i = 1, 2k ∈ Z5 be the ith component

of
−→
� k(λ, z). Then

(i)
−→
� k(λ, z) is a meromorphic function of z. All the singularities are double poles. Moreover,
a ∈ C is a pole of

−→
� k(λ, z) iff it is a pole of y.

(ii) If a ∈ C is a pole of y then

�k(λ) = lim
z→a

(z − a)�
(2)
k (λ, z)

is an entire function of λ. It satisfies the following Schrödinger equation with cubic
potential:

d2�k(λ)

dλ2
= (4λ3 − 2aλ − 28b)�k(λ), (8)

where b ∈ C is the coefficient entering into the Laurent expansion (7) of y around a.
(iii) If λ

1
2 and λ

1
4 are chosen as in asymptotics (3), then ∀ε > 0

lim
λ→∞,|λ− 2πk

5 |< 3π
5 −ε

λ
3
4 e+ 4

5 λ
5
2 − 1

2 aλ
1
2
�k(λ) = i. (9)

(iv) Equation (8) possesses the same monodromy data as equation (1), i.e.

�k−1(λ) = �k+1(λ) + σk�k(λ).
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Proof. (i) From the Laurent expansion (7), it is easily seen that a pole a of y is a fuchsian
singularity with trivial monodromy of equation (2). In particular, the following Laurent
expansions of �

(i)
k (λ, z) are valid:

�
(2)
k (λ, z) = ψk(λ)

(z − a)

(
1 − λ

2
(z − a)2

)
+ ϕk(λ)(z − a)2 + O((z − a)3),

�
(1)
k (λ, z) = ψk(λ)

(z − a)2

(
1 +

λ

2
(z − a)2

)
− 2ϕk(λ)(z − a) + O((z − a)2).

(10)

Expansions (10) show that
−→
� k(λ, z) is meromorphic in a neighborhood of the point a and this

point is a pole of order not greater than 2.
(ii), (iii) The proof is in appendix B.
(iv) Since the functions (z − a)�

(2)
k satisfy equations (4) for any z with constant Stokes

multipliers, then their limit, i.e. the functions �k(λ), satisfy the same equations. �

Definition 4. We call any cubic polynomial of the form V (λ; a, b) = 4λ3 − 2aλ − 28b a
cubic potential. The above formula identifies the space of cubic potentials with C

2
� (a, b).

We define the map

T : C
2 → V.

T (a, b) is the monodromy data of equation (8).

Theorem 2 has the following.

Corollary. M ◦ L = T .

The above corollary implies

Theorem 3. Let y be any solution of P-I. Then a ∈ C is a pole of y iff there exists b ∈ C such
that M(y) = T (a, b).

We finish this section with a theorem from Nevanlinna’s theory [Nev70], which implies
the surjectivity of the map M.

Theorem 4. The map T is surjective. The preimage of any admissible monodromy data is a
countable infinite subset of the space of cubic potentials.

Proof. See [Elf34]. �

As a consequence of the above theorem we have the following.

Theorem 5 (stated in [KK93]). The map M is bijective: solutions of P-I are in 1-to-1
correspondence with admissible monodromy data.

Theorem 3 shows that the distribution of poles of P-I transcendents is a part of the theory
of anharmonic oscillators, which has been the object of intense study since the seminal papers
[BW68, Sim70].

Remark. In the theory of anharmonic oscillators a special importance is given to the vanishing
of some Stokes multipliers. For a given k ∈ Z5, the problem is to find all (a, b) ∈ C

2 such
that the Stokes multiplier σk of equation (8) vanishes. This is called the kth lateral connection
problem. Since fixed a, there exists a discrete number of solutions to any lateral connection
problem, equation σk = 0 is referred to as a quantization condition.

6
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As a consequence of theorems 1 and 3, we have the following.

Corollary. The point a ∈ C is a pole of the integrále tritronquée if and only if there exists
b ∈ C such that the Schrödinger equation with the cubic potential V (λ; a, b) admits the
simultaneous solution of two different quantization conditions, namely σ±2 = 0.

2.3. Asymptotic values

As was previously observed, Stokes multipliers are defined by particular normalized solutions
of equations (1) and (8). Following Nevanlinna, we define the monodromy data of equation (8)
in a more invariant way.

Definition 5. Let {ϕ, χ} be a basis of solution of (8).
We call

wk(ϕ, χ) = lim
λ→∞

| arg λ− 2πk
5 |< π

5 −ε

ϕ(λ)

χ(λ)
∈ C ∪ ∞, k ∈ Z5. (11)

the kth asymptotic value.

We collect the main properties of the asymptotic values in the following.

Lemma 4.

(i) Let ϕ′ = aϕ + bχ and χ ′ = cϕ + dχ ′, a, b, c, d ∈ C. Then

wk(ϕ
′, χ ′) = awk(ϕ, χ) + b

cwk(ϕ, χ) + d
. (12)

(ii) wk−1(ϕ, χ) = wk+1(ϕ, χ) iff σk = 0.
(iii) wk+1(ϕ, χ) 
= wk(ϕ, χ)

Proof. See [Elf34]. �

Making use of equation (11), given the Stokes multipliers it is possible to calculate the
asymptotic values. The converse is also true. In particular, the asymptotic values associated
to the tritronquée integrále can be chosen to be

w0 = 0, w1 = w−2 = 1, w2 = w−1 = ∞. (13)

3. Stokes complexes

In the complex WKB method a prominent role is played by the Stokes and anti-Stokes lines,
and in particular by the topology of the Stokes complex, which is the union of the Stokes lines.

The main result of this section is the classification theorem, where we show that the
topological classification of Stokes complexes divides the space of cubic potentials into seven
disjoint subsets.

To avoid any misunderstanding, we stress that by our convention Stokes lines are level
curves of the real part of the action.

Remark. To simplify the notation and avoid repetitions, we study the Stokes lines only.
Every single statement in the following section remains true if the word Stokes is replaced
with the word anti-Stokes, provided in equation (14) the angles ϕk are replaced with the angles
ϕk + π

5 .

7
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Definition 6. A simple (resp. double, resp. triple) zero λi of V (λ) = V (λ; a, b) is called a
simple (resp. double, resp. triple) turning point. All other points are called generic.

Fix a generic point λ0 and a choice of the sign of
√

V (λ0). We call action the analytic
function

S(λ0, λ) =
∫ λ

λ0

√
V (u) du

defined on the universal covering of λ-plane minus the turning points.

Let ĩλ0 be the level curve of the real part of the action passing through a lift of λ0.
Call its projection to the punctured plane iλ0 . Since iλ0 is a one dimensional manifold, it
is diffeomorphic to a circle or to a line. If iλ0 is diffeomorphic to the real line, we choose
one diffeomorphism iλ0(x), x ∈ R in such a way that the continuation along the curve of the
imaginary part of the action is a monotone increasing function of x ∈ R.

Lemma 5. Let λ0 be a generic point. Then iλ0 is diffeomorphic to the real line, the limit
limx→+∞ iλ0(x) exists (as a point in C ∪ ∞) and it satisfies the following dichotomy:

(i) Either limx→+∞ iλ0(x) = ∞ and the curve is asymptotic to one of the following rays of
the complex plane:

λ = ρ eiϕk , ϕk = (2k + 1)π

5
, ρ ∈ R

+, k ∈ Z5, (14)

(ii) or limx→+∞ iλ0(x) = λi , where λi is a turning point.

Furthermore,

(i) if limx→±∞ iλ0(x) = ∞, then the asymptotic ray in the positive direction is different from
the asymptotic ray in the negative direction.

(ii) Let ϕk, k ∈ Z5 be defined as in equation (14). Then ∀ε > 0, ∃K ∈ R
+ such that if

ϕk−1 + ε < arg λ0 < ϕk − ε and |λ0| > K , then limx→±∞ iλ0(x) = ∞. Moreover the
asymptotic rays of iλ0 are the ones with arguments ϕk and ϕk−1.

Proof. See [Str84]. �

Definition 7. We call Stokes line the trajectory of any curve iλ0 such that there exists at least
one turning point belonging to its boundary.

We call a Stokes line internal if ∞ does not belong to its boundary.
We call Stokes complex the union of all the Stokes lines together with the turning points.

We state all important properties of the Stokes lines in the following.

Theorem 6. The following statements hold true:

(i) The Stokes complex is simply connected. In particular, the boundary of any internal
Stokes line is the union of two different turning points.

(ii) Any simple (resp. double, resp. triple) turning point belongs to the boundary of three
(resp. 4, resp 5) Stokes lines.

(iii) If a turning point belongs to the boundary of two different non-internal Stokes lines then
these lines have different asymptotic rays.

(iv) For any ray with the argument ϕk as in equation (14), there exists a Stokes line asymptotic
to it.

Proof. See [Str84]. �

8
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3.1. Topology of stokes complexes

In what follows, we give a complete classification of the Stokes complexes, with respect to
the orientation preserving homeomorphisms of the plane.

We define the map L from the λ-plane to the interior of the unit disk as

L: C → D1 L(ρ eiϕ) = 2

π
eiϕ arctan ρ. (15)

The image under the map L of the Stokes complex is naturally a decorated graph embedded
in the closed unit disk. The vertices are the images of the turning points and the five points
on the boundary of the unit disk with arguments ϕk , with ϕk as in equation (14). The bonds
are obviously the images of the Stokes lines. We call the first set of vertices internal and the
second set of vertices external. External vertices are decorated with the numbers k ∈ Z5. We
denote S the decorated embedded graph just described. Note that due to theorem 6 (iii), there
exists not more than one bond connecting two vertices.

The combinatorial properties of S are described in the following.

Lemma 6. S possesses the following properties:

(i) the sub-graph spanned by the internal vertices has no cycles.
(ii) Any simple (resp. double, resp. triple) turning point has valency 3 (resp. 4, resp. 5).

(iii) The valency of any external vertex is at least 1.

Proof.

(i) Theorem 6 part (i)
(ii) Theorem 6 part (ii)

(iii) Theorem 6 part (iv). �

Definition 8. We call an admissible graph any decorated simple graph embedded in the
closure of the unit disk with three internal vertices and five decorated external vertices, such
that (i) the cyclic order inherited from the decoration coincides with the one inherited from
the counter-clockwise orientation of the boundary, and (ii) it satisfies all the properties of
lemma 6. We call two admissible graphs equivalent if there exists an orientation-preserving
homeomorphism of the disk mapping one graph into the other.

Theorem 7. Classification theorem
All equivalence classes of admissible maps are, modulo a shift k → k + m,m ∈ Z5 of the

decoration, the ones depicted in figure 1.

Proof. Let us start analyzing the admissible graphs with three internal vertices and no internal
edges.

Any internal vertex is adjacent to a triplet of external vertices. Due to the Jordan curve
theorem, there exists an internal vertex, say λ0, adjacent to a triplet of non consecutive external
vertices. Performing a shift, they can be chosen to be the ones labeled by 0, 2,−1. Call the
respective edges e0, e−1, e2.

The disk is cut into three disjoint domains by those three edges. No internal vertices can
belong to the domain cut by e0 and e4, since it could be adjacent only to two external vertices,
namely the ones labeled with 0 and −1. By similar reasoning it is easy to show that one and
only one vertex belongs to each remaining domains.

Such an embedded graph is equivalent to the graph (3 0 0).
Classifications for all other cases may proved by similar methods. �

9
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"Boutroux Graph":(320)
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Figure 1. All the equivalence classes of admissible graphs.

The equivalence classes are encoded by a triplet of numbers (a b c): a is the number of
simple turning points, b is the number of internal Stokes lines, while c is a progressive number,
distinguishing non-equivalent graphs with same a and b. Some additional information shown
in figure 1 will be explained in the next section.
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Remark. For any admissible graph there exists a real polynomial with an equivalent Stokes
complex.

Remark. Note that the automorphism group of every graph in figure 1 is trivial. Therefore
the unlabeled vertices can be labeled. In the following we will label the turning points as in
figure 1. We denote “Boutroux graph” the graph (3 2 0).

3.2. Stokes sectors

In the λ-plane the complement of the Stokes complex is the disjoint union of a finite number
of connected and simply-connected domains, each of them called a sector.

Combining theorem 6 and the classification theorem we obtain the following.

Lemma 7. All the curves iλ0 , with λ0 belonging to a given sector, have the same two asymptotic
rays. Moreover, two different sectors have different pairs of asymptotic rays.

For any k ∈ Z5 there is a sector, called the kth Stokes sectors, whose asymptotic rays
have arguments ϕk−1 and ϕk . This sector will be denoted �k . The boundary ∂�k of each �k

is connected.
Any other sector has asymptotic rays with arguments ϕk−1 and ϕk+1, for some k. We call

such a sector the kth sector of band type, and we denote it Bk. The boundary ∂Bk of each Bk

has two connected components.

Choose a sector and a point λ0 belonging to it. The function S(λ0, λ) maps a Stokes sector
bi-holomorphically into the half plane and a Bk sector bi-holomorphically into a vertical strip.

Definition 9. We call a differentiable curve γ : [0, 1] → C an admissible path provided
γ is injective on [0, 1[, λi /∈ γ ([0, 1]), for all turning points λi , and ReS(γ (0), γ (t)) is a
monotone function of t ∈ [0, 1].

We say that �j � �k if there exist μj ∈ �j , μk ∈ �k and an admissible path such that
γ (0) = μj , γ (1) = μk .

The relation � is obviously reflexive and symmetric but it is not in general transitive.
Note that �j � �k if and only if for every point μj ∈ �j and every point μk ∈ �k an

admissible path exists.

Lemma 8. The relation � depends only on the equivalence class of the Stokes complex S.

Proof. Consider an admissible path from �j to �k , j 
= k. The path is naturally associated
to the sequence of Stokes lines that it crosses. We denote the sequence ln, n = 0, . . . , N ,
for some N ∈ N. We continue analytically S(μj , ·) to a covering of the union of the Stokes
sectors crossed by the path together with the Stokes lines belonging to the sequence. Since
S(μj , ·) is constant along each connected component of the boundary of every lift of a sector
crossed by the path, then each of such connected components cannot be crossed twice by
the path. Hence, due to the classification theorem no admissible path is a loop. Therefore, the
union of the Stokes sectors crossed by the path together with the Stokes lines belonging to the
sequence is simply connected.

Conversely, given any injective sequence of Stokes lines ln, n = 0 . . . , N such that for
any 0 � n � N − 1, ln and ln+1 belong to two different connected components of the
boundary of a same sector, there exists an admissible path with that associated sequence. This
last observation implies that the relation � depends only on the topology of the graph S.
Moreover, if the sequence exists it is unique; indeed, if there existed two admissible paths,

11
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Table 1. Computation of the relation �.

Graph Pairs of non-consecutive sectors not satisfying the relation �

3 0 0 None
3 1 0 (�0, �2), (�0, �−2)

3 1 1 (�1, �−1)

3 2 0 (�1, �−1), (�1, �−2), (�−1, �2)

1 0 0 (�1, �−1), (�0, �−2), (�0, �2)

1 1 0 All but (�1, �−1)

0 0 0 All

joining the same μj and μk but with different sequences, then there would be an admissible
loop. �

With the help of lemma 8 and of the classification theorem, relation � can be easily
computed, as is shown in table 1. As is evident from figure 1, for any graph type we have that
�k � �k+1,∀k ∈ Z5.

4. Complex WKB method and asymptotic values

In this section we introduce the WKB functions jk, k ∈ Z5 and use them to evaluate the
asymptotic values of equation (8). The topology of the Stokes complex will show all its
importance in these computations.

On any Stokes sector �k , we define the functions

Sk(λ) = S(λ∗, λ), (16)

Lk(λ) = −1

4

∫ λ

λ∗

V ′(u)

V (u)
du, (17)

jk(λ) = e−Sk(λ)+Lk(λ). (18)

Here λ∗ is an arbitrary point belonging to �k and the branch of
√

V is such that ReSk(λ)

is bounded from below.
We call jk the kth WKB function.

4.1. Maximal domains

In this subsection we construct the kth maximal domain, that we denote Dk. This is the domain
of the complex plane where the kth WKB function approximates a solution of equation (8).

The construction is done for any k in a few steps (see figure 2 for the example of the
Stokes complex of type (3 0 0)):

(i) for every �l such that �l � �k , denote Dk,l the union of the sectors and of the Stokes
lines crossed by any admissible path connecting �l and �k .

(ii) Let D̂k = ∪lDl,k . Hence D̂k is a connected and simply connected subset of the complex
plane whose boundary ∂D̂k is the union of some Stokes lines.

(iii) Remove a δ-tubular neighborhood of the boundary ∂D̂k , for an arbitrarily small δ > 0,
such that the resulting domain is still connected.

12
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Figure 2. In the drawings, the construction of D0 for a graph of type (3 0 0) is depicted.

(iv) For all l 
= k, l 
= k − 1, remove from D̂k an angle λ = ρ eiϕ, |ϕ − ϕl| < ε, ρ > R, for
ε arbitrarily small and R arbitrarily big, in such a way that the resulting domain is still
connected. The remaining domain is Dk.

4.2. Main theorem of WKB approximation

We can now state the main theorem of the WKB approximation.
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Theorem 8 (G.D. Birkhoff [Bir33], Olver [Olv74]). Continue the WKB function jk to Dk.
Then there exists a solution ψk(λ) of (8), such that for all λ ∈ Dk∣∣∣∣ψk(λ)

jk(λ)
− 1

∣∣∣∣ � g(λ)(e2ρ(λ) − 1).

Here ρk is a bounded positive continuous function, called the error function, satisfying

lim
λ→∞

ϕk−1<argλ<ϕk+1

ρk(λ) = 0,

and g(λ) is a positive function such that g(λ) � 1 and

lim
λ→∞

λ∈Dk∩�k±2

g(λ) = 1
2 .

Proof. The proof is in the appendix A. �

Note that jk is sub-dominant (i.e. it decays exponentially) in �k and dominant (i.e. it
grows exponentially) in �l,∀l 
= k.

For the properties of the error function, ψk is subdominant in �k and dominant in �k±1.

4.3. Computations of asymptotic values in WKB approximation

The aim of this paragraph is to compute the asymptotic values for the Schrödinger
equation (8) in WKB approximation. We explicitly work out the example of the Stokes
complex of type (3 2 0), relevant to the study of poles of the integrále tritronquée.

Definition 10. Define the relative errors

ρk
l =

⎧⎨⎩
lim

λ→∞
λ∈�k∩Dl

ρl(λ), if �l � �k

∞, otherwise

and the asymptotic values

wk(l,m)
def= wk(ψl, ψm). (19)

We say that �k ∼ �l provided ρk
l <

log 3
2 . The relation ∼ is a sub-relation of �.

Note that ρl+1
l = 0 and ρm

l = ρl
m (see appendix A).

In order to compute the asymptotic value wk(l,m), we have to know the asymptotic
behavior of ψl and ψm in �k . By theorem 8,

lim
λ→∞

λ∈�k∩Dl

ψl(λ)

jl(λ)

= 0, if

1

2
(e2ρl

k − 1) < 1.

Hence the asymptotic behavior of ψl in �k can be related to the asymptotic behavior of jl in
�k if the relative error ρk

l is so small that the above inequality holds true, i.e. if �k ∼ �l .

Remark. Depending on the type of the graph S, there may not exist two indices k 
= l such
that all the relative errors ρn

l , ρn
k , n ∈ Z5 are small. However, it is often possible to compute

an approximation of all the asymptotic values wn(l, k) using the strategy below.

14
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(i) We select a pair of non consecutive Stokes sectors �l , �l+2, with the hypothesis that the
functions ψl and ψl+2 are linearly independent, so that wl(l, l+2) = 0, wl+2(l, l+2) = ∞.
Since ρl+1

l = ρl+1
l+2 = 0 then

wl+1(l, l + 2) = lim
λ→∞

λ∈�l+1∩Dl∩Dl+2

jl(λ)

jl+2(λ)
.

Therefore, we find three exact and distinct asymptotic values.
(ii) For any k 
= l, l + 1, l + 2 such that �l ∼ �k and �l+2 ∼ �k , we define the approximate

asymptotic value

ŵk(l, m) = lim
λ→∞

λ∈�k∩Dl∩Dl+2

jl(z)

jm(z)
.

The spherical distance between wk(l,m) and ŵk(l, m) may be easily estimated from
above knowing the relative errors ρl

k and ρl+2
k .

If for any k 
= l, l + 1, l + 2, �l ∼ �k and �l+2 ∼ �k , then the calculation is completed.
(iii) If not, we can use the fact that quintuplets of asymptotic values for different choices

of ψl, ψl+2 are related by a Möbius transformation (see formula (12)). If for some pair
(l, l + 2) the assumption �l ∼ �k,�l+1 ∼ �k fails to be true for just one value of the
index k = k∗, and, for another pair (l′, l′ + 2), the assumption �l′ ∼ �k′, �l′+2 ∼ �k′

fails to be true for just one valued of the index k′ = k′∗, with k′∗ 
= k∗, then there are three
values of the index m ∈ Z5 such that an approximation of wm(l, l + 2) and wm(l′, l′ + 2)

is computable. Since any Möbius transformation is fixed by the action on three values,
then we can compute an approximation of the transformation relating the quintuplets
wk(l, l + 2) and wk(l

′, l′ + 2) for any k ∈ Z5. Hence, we can calculate an approximation
of the whole quintuplets wk(l, l + 2) and wk′(l′, l′ + 2).

Remark. As shown in table 1, the relation � is uniquely characterized by the graph type. For
the sake of computing the asymptotic values the important relation is ∼ and not �. Indeed, the
calculations for a given graph type, say (a b c), are valid for (and only for) all the potentials
whose relation ∼ is equivalent to the relation � characterizing the graph type (a b c).

Due to the above remark, in what follows we suppose that the relation ∼ is equivalent to
the relation �. We have the following.

Lemma 9. Let V (λ; a, b) such that the type of the Stokes complex is (3 0 0), (3 1 0), (3 1 1);
moreover, suppose that the ∼ relation coincides with �. Then all the asymptotic values of
equation (8) are pairwise distinct, with the possible exception of a single pair.

Proof. For a graph of type (3 0 0) or (3 1 1) the thesis is trivial. For a graph of type (3 2 0), it
may be that w0 = w2 or w0 = w−2. Since w2 
= w−2 the thesis follows. �

We completely work out the case of Stokes complex of type (3 2 0), while for the other
cases we present the results only. Due to lemma 9, we omit the results for potentials whose
graph type is (3 0 0), (3 1 0) and (3 1 1).

Boutroux graph = 3 2 0. We suppose that �0 ∼ �±2.
Let us consider first the pair �0 and �−2. In figure 3 the maximal domains D0 ans D−2

are depicted by coloring the Stokes lines not belonging to them blue and red, respectively. In
particular S0, L0, j0 (resp. S−2, L−2, j−2) can be extended to all D0 (resp. D−2) along any
curve that does not intersect any blue (resp. red) Stokes line.

We fix a point λ∗ ∈ �0 such that S0(λ
∗) = S−2(λ

∗) = L0(λ
∗) = L−2(λ

∗) = 0.
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Figure 3. Calculation of w−1(0, −2) and of ŵ2(0, −2)

By definition

ŵk(0,−2) = lim
λ→∞k

j0(λ)

j−2(λ)

= lim
λ→∞k

e−S0(λ)+S−2(λ) eL0(λ)−L−2(λ),

Here λ → ∞k is a short-hand notation for λ → ∞, λ ∈ �k ∩ D0 ∩ D−2. We calculate
ŵk(0,−2) for k = −1, 2.

We first calculate limλ→∞k
e−S0(λ)+S−2(λ).

Note that ∂S0
∂λ

= ∂S−2

∂λ
in �k . Hence,

lim
λ→∞k

−S0(λ) + S−2(λ) = −S0(μk) + S−2(μk), k = −1, 2,

where μk is any point belonging to �k (in figure 3, the paths of integration defining S0(μk)

and S−2(μk) are colored blue and red, respectively).
On the other hand, since ∂S0

∂λ
= − ∂S−2

∂λ
in �0 ∪ �−2, we have that

−S0(μk) + S−2(μk) = −2S0(λs), s = −1 if k = −1 and s = 0 if k = 2.

We now compute limλ→∞k
eL0(λ)−L−2(λ). Since ∂L0

∂λ
= ∂L−2

∂λ
in D0

⋂
D−2, we have that

lim
λ→∞k

L0(λ) − L−2(λ) = L0(μk) − L−2(μk),

L0(μk) − L−2(μk) = −1

4

∮
ck

V ′(μ)

V (μ)
dμ, k = −1, 2.

Here ck is the blue path connecting λ∗ with μk composed with the inverse of the red path
connecting λ∗ with μk (see figure 3).

Therefore, we have

lim
λ→∞k

L0(λ) − L−2(λ) = −σ
2πi

4
, σ = −1 if k = −1 and σ = +1 if k = 2.

Combining the above computations, we get

w−1(0,−2) = i e−2S0(λ−1), ŵ2(0,−2) = −i e−2S0(λ0).

We stress that w−1(0,−2) is exact while ŵ2(0,−2) is an approximation.
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Performing the same computations for the pair �0 and �2, we obtain

w1(0, 2) = −i e−2S0(λ1), ŵ−2(0, 2) = i e−2S0(λ0).

Having calculated the triplet of asymptotic values w0, w2, w−2 for two different pairs of
Stokes sectors, we can compute an approximation of the Möbius transformation relating all
the asymptotic values for the two pairs:

ŵk(0,−2) = −i e−2S0(λ0)
ŵk(0, 2)

ŵk(0, 2) − i e−2S0(λ0)
, k ∈ Z5.

We eventually compute the last asymptotic value for the pair �0, �−2, that is

ŵ1(0,−2) = −i
e−2S0(λ1)

1 + e−2(S0(λ1)−S0(λ0))
.

Quantization conditions. The computations above provides us with the following quantization
conditions:

ŵ1 = w−2 ⇔ e−2(S0(λ1)−S0(λ0)) = −1 (20)

ŵ2 = w−1 ⇔ e−2(S0(λ−1)−S0(λ0)) = −1 (21)

ŵ1 = w−1 ⇔ e−2(S0(λ1)−S0(λ−1)) = −1 + e−2(S0(λ1)−S0(λ0)). (22)

We note that equation (22) is incompatible both with (20) and (21). Equations (20) and
(21) are Bohr–Sommerfeld quantizations.

As was shown in equation (13), the poles of the integrále tritronquée are related to
the polynomials such that w1 = w−2 and w−1 = w2. Since equations (20) and (21) can
be simultaneously solved, solutions of system (20), (21) describe, in WKB approximation,
polynomials related to the integrále tritronquée. System (20), (21) was found by Boutroux in
[Bou13] (through a completely different analysis), to characterize the asymptotic distribution
of the poles of the integrále tritronquée. Therefore, we call (20), (21) the Bohr–Sommerfeld–
Boutroux system.

Equation (22) will not be studied in this paper, even though is quite remarkable. Indeed,
it describes the breaking of the PT symmetry (see [DT00, BBM+01]).

Case (1 0 0)

w0(1,−1) = −1

ŵ−2(1,−1) = ŵ2(1,−1) = 1.

Since w0 
= ŵ±2 and w2 
= w−2, if the error ρ−2
1 or ρ2

−1 is small enough, then all the
asymptotic values are pairwise distinct.

Case (1 1 0)

ŵ−1(1,−2) = 1

w2(1,−2) = −1.

In this case, it is impossible to calculate w0 with the WKB method that has been here
developed. Hence, it may be that either w0 = w2 or w0 = w−2.

Note, however, that (1 1 0) is the graph only of a very restricted class of potentials namely
V (λ) = (λ + λ0)

2(λ − 2λ0), where λ0 is real and positive. Since the potential is real then
w0 
= w±2.

Case (0 0 0). In this case, no asymptotic values can be calculated. Note, however, that
V (λ) = λ3 is the only potential with graph (0 0 0). For this potential the asymptotic values
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can be computed exactly, simply using symmetry considerations. Indeed one can choose
wk = e

2kπ
5 i , k ∈ Z5.

4.4. Small parameter

The WKB method normally applies to problem with an external small parameter, usually
denoted h̄ or ε. In the study of the distributions of poles of a given solution y of P-I there is
no external small parameter and we have to explore the whole space of cubic potentials. The
aim of this section is to introduce a tool that allows us to investigate the validity of the WKB
approximation.

On the linear space of cubic potentials in canonical form

V (λ; a, b) = 4λ3 − 2aλ − 28b,

we define the following action of the group R
+ × Z5 (similar to what is called Symanzik

rescaling in [Sim70]):

(x,m)[V (λ; a, b)] = V (λ;�2mx2a,�3mx3b), x ∈ R
+, m ∈ Z5, � = e

2π
5 i . (23)

The induced action on the graph S, on the relative error ρm
l , and on the difference

Si(λj ) − Si(λk) is described in the following.

Lemma 10. Let the action of the group R
+ × Z5 be defined as above. Then

(i) (x,m) leaves the graph S invariant, but for a shift of the labels k → k + m of the external
vertices.

(ii) (x,m)[Si(λj ) − Si(λk)] = x
5
2 (Si(λj ) − Si(λk)).

(iii) (x,m)
[
ρk

l

] = x− 5
2 ρk

l .

Proof. The proof of (i) and (ii) follows from the following equality:√
V (λ;�2kx2a,�3kx3b) dλ = x

5
2

√
V (λ′; a, b) dλ′, λ = xλ′.

The proof of point (iii) follows from a similar scaling law of the 1-form α(λ) dλ (see
equation (A.5) in appendix A). �

Due to lemma 10 (iii), ε = ∣∣ a
b

∣∣ plays the role of the small parameter. Indeed, along any
orbit of the action of the group R × Z5, all the (finite) relative errors go to zero uniformly as∣∣ a
b

∣∣ → 0. The reader should note that fixed one orbit ε → 0 if and only if a → ∞. Hence,
with the help of the WKB method we can study the asymptotic distribution of poles of the
integrále tritronquée.

Since all the relevant information is encoded in the quotient of the space of cubic potentials
with respect to the group action, we define the following change of variable:

ν(a, b) = b

a
, μ(a, b) = b2

a3
. (24)

The induced action on these coordinates is simple, namely

(x,m)[μ(a, b)] = μ(a, b) and (x,m)[ν(a, b)] = �mxν(a, b).

Moreover, the orbit of the set {(ν, μ) ∈ C
2 s.t.|ν| = 1, |arg ν| < π

5 , μ 
= 0} is a dense open
subset of the space of cubic potentials.
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Figure 4. Riemann surface μ2 = V (λ; a, b)

5. Poles of integrále tritronquée

From lemma 9 and the results of the computations in section 4.3, it follows that equation (8)
admits in WKB approximation the simultaneous solutions of the two quantization conditions
w±1 = w∓2 only if the Stokes complex is of type (3 2 0). In particular, after our calculations
the poles of the integrále tritronquée are related, in WKB approximation, to the solutions of
the Bohr–Sommerfeld–Boutroux system (20) and (21).

We rewrite this system in the following equivalent form:∮
a1

√
V (λ; a, b) dλ = iπ

(
n − 1

2

)
∮

a−1

√
V (λ; a, b) dλ = −iπ

(
m − 1

2

)
(25)

where m, n are positive natural numbers and the paths of integration are shown in
figure 4.

System (25) is studied in detail in [KK93] where the following lemma is proven.

Lemma 11. If a polynomial V (λ) = 4λ3−2aλ−28b satisfies the system (25) then |arg a| > 4π
5 .

The Lemma above should be compared to the conjecture, to which we referred in the
introduction.

Real poles. We compute all the real solutions of system (25) and compare them with some
numerical results from [JK01]. We observe that the accuracy of the WKB method is astonishing
also for small a and b (see table 2 below). Such accuracy cannot be explained by means of the
tools developed in the present paper and it will be investigated in a subsequent publication of
the author.

For the subset of real potentials, we have∮
a1

√
V (λ; a, b) dλ =

∮
a−1

√
V (λ; a, b) dλ,
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Table 2. Comparison between numerical and WKB evaluation of the first two real poles of the
integrále tritronquée.

WKB Numeric Error %

a1 −2, 34 −2, 38 1, 5
b1 −0, 064 −0, 062 2
μ1 −3158 −3510 10
a2 −5, 65 −5, 66 0, 2
b2 −0, 23 unknown unknown
μ2 −3158 unknown unknown

where — stands for complex conjugation.
Therefore system (25) reduces to one equation and the real poles of tritronquée are

characterized, in WKB approximation, by one natural number.

Lemma 12. Let μ and ν be defined as in equation (24). Then the real polynomials whose
Stokes complex is of type (3 2 0) are the orbit of a single point of the R

+ action, characterized
by μ∗ ∼= −3158, 92 and ν > 0.

Moreover, if a real polynomial V (λ; a, b) satisfies the Bohr–Sommerfeld-Boutroux
conditions (25), then

a = a∗(n − 1
2

) 4
5 , b = b∗(n − 1

2

) 6
5 (26)

for some n ∈ N and a∗ ∼= −4, 0874, b∗ ∼= −0, 1470.

Proof. All real cubic potentials whose Stokes complex has type (3 2 0) have one real turning
point λ0 and two complex conjugate turning points λ±1. For the subset of real potentials with
two complex conjugate turning points the cycles a±1, as shown in figure 4, are unambiguously
defined. From the classification theorem, it follows that a Stokes complex has type (3 2 0) if
and only if Re

∮
a1

√
V (λ; a, b) dλ = 0, Im

∮
a1

√
V (λ; a, b) dλ 
= 0. Since these conditions are

invariant under the R
+ action, if they are satisfied for a point of the space of cubic potentials,

then they are satisfied on all its orbit. Moreover, it is easily seen that this orbit exists and is
unique. With the help of software of numeric calculus, we characterized numerically the orbit.
After that, using the scaling law in lemma 10 (ii) we calculated all the real solutions of the
Bohr–Sommerfeld–Boutroux system. �

To the best of our knowledge, the asymptotic for the b coefficients has never been given.
In the paper [JK01], the authors showed that the integrále tritronquée has no poles on the

real positive axis. The real poles are a decreasing sequence of negative numbers an and some
of them are evaluated numerically in the same paper.

In table 2, we compare the first two real solutions to system (25) with the numerical
evaluation of the first two poles of the integrále tritronquée.

6. Concluding remarks

We have studied the distribution of the poles of solutions to the Painlevé first equation using the
theory of the cubic anharmonic oscillator. We have applied a suitable version of the complex
WKB method to analyze the distribution of poles of the integrále tritronquée.

In subsequent publications we plan to pursue our study of poles of P-I transcendents in
different directions.
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In particular, we want to use the Nevanllina theory of the branched coverings of the sphere
to complete the analysis of the poles of the integrále tritronquée, showing that the developed
WKB method yields a complete qualitative picture and efficient quantitative estimates of the
distribution of the poles.

Since the quantization condition σ0 = 0 characterizes the monodromy data of a family
of special solutions of P-I, called integrále tronquée (see [Kap04]), these solutions are strictly
related to the spectral theory of PT symmetric anharmonic oscillators and to functional
equations of Bethe Ansatz type (for what concerns the PT symmetric anharmonic oscillators
and the Bethe Ansatz equations, see [DDT01] and references therein). We will investigate the
consequences of this relation in a subsequent publication.

Remark. After the main computations of the present paper had been completed, the author
learned from B. Dubrovin about the results of V. Novokshenov presented at the conference
NEEDS09 (May 2009). Novokshenov studied WKB solutions to the Schrödinger equation (8)
with b = 0 and their connections to the distributions of poles of certain particular solutions to
the Painlevé-I equation, including integráles tronquée and integrále tritronquée.
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Appendix A

The aim of this appendix is to prove theorem 8. Our approach is similar to the approach of
Fedoryuk [Fed93].

Notations are as in sections 3 and 4, except for ∞k . In what follows, we suppose to have
fixed a certain cubic potential V (λ; a, b) and a maximal domain Dk. To simplify the notation
we write V (λ) instead of V (λ; a, b).

Gauge transform to an L-diagonal system

The strategy is to find a suitable gauge transform of equation (8) such that for large λ it
simplifies. We rewrite the Schrödinger equation

−ψ ′′(λ) + V (λ)ψ(λ) = 0, (A.1)

in first-order form:

� ′(λ) = E(λ)�(λ), E(λ) =
(

0 1
V (λ) 0

)
. (A.2)

Lemma 13 [Fedoryuk]. In Dk
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(i) the gauge transform

Y (λ) = A(λ)U(λ),

A(λ) = jk(λ)

(
1 1√

V (λ) − V ′(λ)

4V (λ)
−√

V (λ) − V ′(λ)

4V (λ)

)
,

(A.3)

is non-singular and
(ii) system (A.2) is transformed into the following one:

U ′(λ) = F(λ)U(λ) = (A−1EA − A−1A′)U,

F (λ) = 2
√

V (λ)

(
1 0
0 0

)
+ α(z)

(
1 1

−1 −1

)
,

(A.4)

α(λ) = 1

32
√

V (λ)
5
(4V (λ)V ′′(λ) − 5V ′2(λ)). (A.5)

Proof.

(i) Indeed det A(λ) = 2j 2
k (λ)

√
V (λ) 
= 0,∀λ ∈ Dk , by construction of jk and Dk.

(ii) It is proven by a simple calculation.
�

Some technical lemmas

Before we can begin the proof of theorem 8, we have to introduce the compactification of Dk

and the preparatory lemma 14.

Compactification of DK. Since Dk is simply connected, it is conformally equivalent to the
interior of the unit disk D. We denote U the uniformization map, U : D → Dk .

By construction, the boundary of Dk is the union of n free Jordan curves, all intersecting
at ∞. Here n is equal to the number of sectors �l such that �l � �k minus 2.

Due to an extension of Carathéodory’s theorem ([Car], section 134–138), the map U
extends to a continuous map from the closure of the unit circle to the closure of Dk. The map
is injective on the closure of D minus the n counterimages of ∞. Hence, the uniformization
map realizes a n point compactification of Dk, that we call Dk . In Dk there are n point at ∞.
We denote ∞k the point at ∞ belonging to the closure of U (�k−1 ∪ �k ∪ �k+1). Moreover,
for λ = k + 2 orλ = k − 2, if �l � �k we denote ∞l the point at ∞ belonging to the closure
of U(�l).

Definition 11. Let H be the space of function holomorphic in Dk and continuous in Dk . H
endowed with the sup norm is a Banach space (H, ‖ · ‖H ).

Let �(λ), λ ∈ Dk −∞k be the set of injective piecewise differentiable curves γ : [0, 1] →
Dk , such that

(1) γ (0) = λ, γ (1) = ∞k ,
(2) ReSk(γ (0), γ (t)) is eventually non-decreasing,
(3) there is an ε > 0 such that eventually

∣∣arg γ (t) − 2πk
5

∣∣ < π
5 − ε,

(4) the length of the curve restricted to [0, T ] is O (|γ (T )|) , ast → 1.
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Let �̃(λ) be the subset of �(λ) of the paths along which ReSk(γ (0), γ (t)) is non-
decreasing.

Let K1 : H → H and K2 : H → H be defined (for the moment formally)

K1[h](λ) = −
∫

γ∈�(λ)

e2Sk(μ,λ)α(μ)h(μ) dμ, (A.6)

K2[h](λ) =
∫

γ∈�(λ)

α(μ)h(μ) dμ. (A.7)

Let ρ : Dk → Dk:

ρ(λ) =
⎧⎨⎩ inf

γ∈�̃(λ)

∫ 1

0

∣∣α(γ (t))
dγ (t)

dt

∣∣ dt, if λ 
= ∞k

0, if λ = ∞k.

Remark 8. Since along rays of fixed argument ϕ, with
∣∣ϕ − 2πk

5

∣∣ < π
5 −ε, ReSk is eventually

increasing, there are paths satisfying point (1) through (4) of the above definition. Moreover,
by construction of Dk, �̃(λ) is non empty for any λ.

Before beginning the proof of the theorem, we need the following preparatory.

Lemma 14.

(i) ρ is a continuous function.
(ii) K1 and K2 are well-defined bounded operator. In particular

|Ki[h](λ)| � ρ(λ)‖h‖H , i = 1, 2 (A.8)

(iii) K2[h](∞k) = K1[h](∞k) = K1(∞k±2) = 0,∀h ∈ H.

Proof. The proof is rather standard and left to the reader. �

We are now ready to prove theorem 8.

Theorem 9. Extend the WKB function jk to Dk. There exists a unique solution ψk of (8) such
that for all λ ∈ Dk∣∣∣∣ψk(λ)

jk(λ)
− 1

∣∣∣∣ � g(λ)(e2ρ(λ) − 1)∣∣∣∣ ψ ′
k(λ)

jk(λ)
√

V (λ)
+ 1

∣∣∣∣ �
∣∣∣∣ V ′(λ)

4V (λ)
3
2

∣∣∣∣ +

(
1 +

∣∣∣∣ V ′(λ)

4V (λ)
3
2

∣∣∣∣ )g(λ)(e2ρ(λ) − 1),

where g(λ) is a positive function, g(λ) � 1 and g(∞k±2) = 1
2 .

Proof. We seek a particular solution to the linear system (A.4) via successive approximation.
If U(λ) = U(1) ⊕U(2) ∈ H ⊕H satisfies the following integral equation of Volterra type:

U(λ) = U0 + K[U ](λ), U0 ≡
(

0
1

)
,

K[U ](λ) =
(

K1[U(1) + U(2)](λ)

K2[U(1) + U(2)](λ)

)
,

(A.9)

then U(λ) restricted to Dk satisfies (A.4).
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We define the Neumann series as follows:

Un+1 = U0 + K[Un], Un+1 =
n+1∑
i=0

Ki[U 0]. (A.10)

Due to lemma 14 and to general properties of Volterra integral operators, we find the
following estimate:

|Kn[U0](i)(λ)| � 1

2

1

n!
(2ρ(λ))n , (A.11)

where Kn[U0](i) is the second component of Kn[U0].
Thus, the sequence Un converges in H and is a solution to (A.9); call U its limit. Due to

lemma 14, U(1)(∞k±2) = 0.
Let �k be the solution to (A.2) whose gauge transform is U restricted to Dk; The first

component ψk of �k satisfies equation (A.1).
From the gauge transform (A.3), we obtain

ψk(λ)

jk(λ)
− 1 = U1(λ) + U2(λ) − 1,

ψ ′
k(λ)

jk(λ)
√

V (λ)
+ 1 = U1(λ)

(
1 − V ′(λ)

4V (λ)
3
2

)
− (U2(λ) − 1)

(
1 +

V ′(λ)

4V (λ)
3
2

)
− V ′(λ)

4V (λ)
3
2

,

The thesis follows from these formulas, inequality (A.11) and from the fact that
U1(∞k±2) = 0. �

Remark. The solution ψk(λ) of equation (8) described in theorem 8 may be extended from
Dk to the whole complex plane, since the equation is linear with entire coefficients. The
continuation is constructed in the following corollary.

Corollary 1. For any λ ∈ C, λ not a turning point, we define �(λ) as in definition 11. Fixed
any γ ∈ �(λ) and h a continuous function on γ , we define the functionals Ki[h](λ) as in
equations (A.6) and (A.7). We define the Neumann series as in equations (A.9) and (A.10),
and we continue jk along γ .

Then Neumann series converges and we call U(1)(λ) and U(2)(λ) the first and second
component of its limit.

Moreover, ψk(λ) = (U(1)(λ) + U(2)(λ))jk(λ) solves equation (8) and for any ε > 0

lim
|λ|→∞,|argλ− 2πk

5 |< 3π
5 −ε

(U(1)(λ) + U(2)(λ)) = 1.

The reader should note that if λ /∈ Dk , then �̃(λ) is empty and we cannot estimate ψk(λ)

jk(λ)
.

Appendix B

The aim of this appendix is to prove theorem 2 (ii) and (iii). The notation is, if not otherwise
stated, as in the previous sections of the paper.

Next to a pole z = a of a solution y(z) of P-I, equation (1) becomes meaningless. To get
rid of this singularity we perform a gauge transform of (1) such that the gauge-transformed
equation has full meaning in the limit. In what follows, we suppose that z belongs to a
punctured neighborhood of a, where y(z) is holomorphic.
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A gauge transform

Let z be a fixed regular value of y(z). Let
−→
�(λ, z) = G(λ, z)

−→
� (λ, z),

G(λ, z) =
⎛⎝ y ′(z)+ 1

2(λ−y(z))√
2(λ−y(z))

1√
2(λ−y(z))√

2(λ − y(z)) 0

⎞⎠ . (B.1)

Then
−→
�(λ; z) satisfies (1) if and only if

−→
� (λ; z) satisfies the following equation:

�λ(λ, z) =
(

0 1
Q(λ; z) 0

)
�(λ, z)

where

Q(λ; z) = 4λ3 − 2λz + 2zy(z) − 4y3(z) + y ′2(z) +
y ′(z)

λ − y(z)
+

3

4(λ − y(z))2
. (B.2)

We denote ψ the first component of
−→
� . The equation for

−→
� is equivalent to the following

second order scalar equation for ψ :

ψλ λ(λ, z) = Q(λ; z)ψ(λ, z) (B.3)

We summarize some property of the perturbed potential, which can be easily verified
using the expansion (7).

Lemma 15. Let ε2 = 1
y(z)

= (z − a)2 + O((z − a)6); then

(i) Q(λ; z) has a double pole at λ = 1
ε2 . It is an apparent fuchsian singularity for equation

(B.3): the local monodromy around it is −1.
(ii) Q(λ; z) has two simple zeros at λ = 1

ε2 + O(ε2)

(iii) Q(λ; z) = 4λ3 −2(a + ε)λ−28b +O(ε)− 2λε−1

λ−ε−2 + 3
4(λ−ε−2)2 , where O(ε) does not depend

on λ.

Equation (B.3) is a perturbation of the cubic Schrödinger equation (8) and the asymptotic
behaviors of solutions to the two equations are very similar. Indeed the local picture around
the point at ∞ depends only on the terms 4λ3 and −2zλ3.

More precisely, the equivalent of corollary 1 in appendix A is valid also for the perturbed
Schrödinger equation.

Definition 12. For any z, define a cut from λ = 1
(z−a)2 to ∞ such that it eventually does not

belong to the the angular sector
∣∣arg λ − 2πk

5

∣∣ � 3π
5 .

Fix λ∗ in the cut plane. Sk(λ; z) = ∫ λ

λ∗
√

Q(μ; z) dμ is well-defined for
∣∣arg λ − 2kπ

5

∣∣ < 3π
5

and λ � 0. Here the branch of
√

Q is chosen such that ReSk(λ) → +∞ as |λ| →
∞,

∣∣arg λ − 2πk
5

∣∣ < π
5 − ε. We define jk(λ; z) as in equation (18) and α(λ; z) as in

equation (A.5), but replacing V (λ) with Q(λ; z).
For any λ in the cut plane, let �(λ) be the set of piecewise differentiable curves γ : [0, 1]

to the cut plane, γ (0) = λ, γ (1) = ∞, satisfying properties (2), (3) and (4) of definition 11.
For any γ ∈ �(λ), let H be the Banach space of continuous functions on γ that have a

finite limit as t → 1. Formulas (A.6) and (A.7) define two bounded functionals on H. We call
such functionals K1(λ; z) and K2(λ; z).

Following the proof of theorem 8, the reader can prove the following.

Lemma 16. Let λ belong to the cut plane, λ not a zero of Q(·; z). Fixed any γ ∈ �(λ), we
define the Neumann series as in equations (A.9) and (A.10), and we continue jk along γ .
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Then the Neumann series converges and ψk(λ) = (U1(λ) + U2(λ)) jk(λ) solves
equation (B.3). Moreover, for any ε > 0

lim
|λ|→∞,|argλ− 2πk

5 |< 3π
5 −ε

(U(1)(λ) + U(2)(λ)) = 1

Definition 13. Let ψ̃k(λ, z) be the unique solution of equation (B.3) such that

ψ̃k(λ, z)

λ− 3
4 e− 4

5 λ
5
2 +zλ

1
2

→ 1, as |λ| → ∞, arg λ = 2πk

5
. (B.4)

Here the branch of λ
1
4 is fixed as λ → ∞, arg λ = 2πk

5 , and there it coincides with the
branch chosen in equation (3). We define ψ̃k(λ, a) to be the unique solution of equation (8)
with asymptotic (B.4), where z = a.

We denote ψk(λ; z) the unordered pair
{
ψ̃k(λ, z),−ψ̃k(λ, z)

}
.

Remark. We note that if the cuts are continuous in z, then ψ̃k(λ, z) = c(z)ψk(λ), where
ψk(λ) is the solution constructed in lemma 16 and c(z) is a bounded holomorphic function.

Theorem 10. limz→a ψk(λ, z) = ψk(λ, a), ∀λ ∈ C.

Proof. Let λ be any point in the complex plane which is not a zero of V (λ; a, b). For any
sequence εn converging to zero, we choose two fixed rays r1 and r2 of different argument ϕ1

and ϕ2,
∣∣ϕi − 2kπ

5

∣∣ < π
5 . We denote DR,ε a disk of radius R with center λ = 1

e2 and we split
the sequence εn into two subsequences εi

n such that ri ∩ DR,εi
n
= ∅ for any n big enough.

For i = 1, 2, we choose the cuts defined in definition 12 in such a way that there exists
a differentiable curve γi : [0, 1] → C, γi(0) = λ, γi(1) = ∞ with the following properties:
(i)γi avoids the zeroes of Q(λ, εi

n) and a fixed, arbitrarily small, neighborhood of the zeroes
of V (λ; a, b), (ii)γi does not intersect any cut, and (iv) γi eventually lies on ri.

The proof of the thesis relies on the following estimates:

sup
λ∈C−DR,ε

|λ−δ| |Q(λ; a + ε) − V (λ; a, b)| = O(ε2δ−3),

sup
λ∈C−DR,ε

|λ−δ| |Qλ(λ; a + ε) − Vλ(λ; a, b)| = O(ε2δ−3), (B.5)

sup
λ∈C−DR,ε

|λ−δ| |Qλ λ(λ; a + ε) − Vλ λ(λ; a, b)| = O(ε2δ−3).

Due the above estimates it is easily seen that γi ∈ �(λ), ∀εi
n. Due to lemma 16 and

corollary 1, to prove the thesis it is sufficient to show that the functionals K1
(
λ; a + εi

n

)
and

K2
(
λ; a + εi

n

)
converge in norm to K1(λ; a) and K2(λ; a). Here Ki(λ; a), i = 1, 2 are defined

as in corollary 1. We note that the norm of the functionals are just the L1(γi) norm of their
integral kernels.

We first consider the functionals K2
(
λ; a + εi

n

)
. Due to the above estimates

λ
7
2 α

(
μ, εi

n

) → λ
7
2 α(μ), uniformly onγi([0, 1]) as n → ∞.

Hence the sequence α
(
μ, εi

n

)
converges in norm L1(γi) to α(μ) and the sequence

K2
(
λ; ei

n

)
converges in operator norm to K2(λ; a).

We consider now the sequence K1(λ; a + εi
n).

To prove the convergence of the above sequence of operators, it is sufficient to prove that

eSk(λ;a+εi
n)−Sk(μ;a+εi

n) → eSk(λ;0)−Sk(μ;0) uniformly onγi([0, 1]) as n → ∞.
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We first note that

eSk(λ;0)−Sk(μ;0) − eSk(λ;a+εi
n)−Sk(μ;a+εi

n) = eSk(λ;0)−Sk(μ;0)(1 − eg(μ;ε)),

g(μ, ε) =
∫ μ

λ,γi

Q(ν, ε) − V (ν; a, b)√
Q(ν, ε) +

√
P(ν; a, b)

dν.

Using estimate (B.5), it is easy to show that g(μ; ε) = f (ε)O(μδ), where f (ε) →
0 as ε → 0 and 0 < δ � 1. Therefore, the difference of the exponential functions converges
uniformly to 0. �

We can prove theorem 2 (ii) and (iii).
Indeed from (A.3), it is easily seen that (choosing one of the two branches of the gauge

transform)

−→
�k(λ; z) = G(λ, z)−1−→�k(λ; z) = 1√

2

(
ψ̃k(λ, z)

ψ̃ ′
k(λ, z)

)
,

if
∣∣arg λ − 2πk

5

∣∣ < 3π
5 and |λ| � 0.

Moreover from (A.3), it follows that

lim
z→a

(z − a)�
(2)
k (λ, z) = i

√
2�

(1)
k (λ; a).

Hence, theorem 2 (ii) and (iii) follow from theorem 10.
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Fenn. N.s. 2 3 1–60

[Fed93] Fedoryuk M 1993 Asymptotic Analysis (Berlin: Springer)
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Problems 8 757–85
[GLS00] Gromak V I, Laine I and Shimomura S 2000 Painlevé Differential Equations in the Complex Plane (de
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